Fail To Import Data Artcam
Use the Import Data from Another File button to import vectors from a file. To import vectors from a file: In the Project Tree, click the Vectors item or a vector layer. Jul 1, 2015 - ArtCAM Pro 8.0 Reference Manual By Delcam plc Issue: 8.003 Released. Vi. Contents ArtCAM Pro 8.0 Reference Manual Exporting Vector Artwork. Note: If ArtCAM Pro fails to display the Maintenance Download page. There are currently 2 file extension(s) associated to the ArtCAM application in our database. File types.afn ArtCAM Font.art ArtCAM Model File. There is a lot of dangerous content on the Internet, so you should only install applications coming from a trusted source onto your computer!
I am looking for help to import a .csv
file into SQL Server using BULK INSERT
and I have few basic questions.
Issues:
The CSV file data may have
,
(comma) in between (Ex: description), so how can I make import handling these data?If the client creates the CSV from Excel then the data that have comma are enclosed within
'
(double quotes) [as the below example] so how do the import can handle this?How do we track if some rows have bad data, which import skips? (does import skips rows that are not importable)
Here is the sample CSV with header:
And SQL statement to import:
Somnath Muluk8 Answers
Based SQL Server CSV Import
1) The CSV file data may have ,
(comma) in between (Ex: description), so how can I make import handling these data?
Solution
If you're using ,
(comma) as a delimiter, then there is no way to differentiate between a comma as a field terminator and a comma in your data. I would use a different FIELDTERMINATOR
like . Code would look like and this will handle comma and single slash perfectly.
2) If the client create the csv from excel then the data that have comma are enclosed within ' ... '
(double quotes) [as the below example] so how do the import can handle this?
Solution
If you're using BULK insert then there is no way to handle double quotes, data will beinserted with double quotes into rows.after inserting the data into table you could replace those double quotes with '.
3) How do we track if some rows have bad data, which import skips? (does import skips rows that are not importable)?
Solution
To handle rows which aren't loaded into table because of invalid data or format, could behandle using ERRORFILE property, specify the error file name, it will write the rowshaving error to error file. code should look like.
sawaYou first need to create a table in your database in which you will be importing the CSV file. After the table is created, follow the steps below.
• Log into your database using SQL Server Management Studio
• Right click on your database and select Tasks -> Import Data...
• Click the Next >
button
• For the Data Source, select Flat File Source
. Then use the Browse button to select the CSV file. Spend some time configuring how you want the data to be imported before clicking on the Next >
button.
• For the Destination, select the correct database provider (e.g. for SQL Server 2012, you can use SQL Server Native Client 11.0). Enter the Server name. Check the Use SQL Server Authentication
radio button. Enter the User name, Password, and Database before clicking on the Next >
button.
• On the Select Source Tables and Views window, you can Edit Mappings before clicking on the Next >
button.
• Check the Run immediately
check box and click on the Next >
button.
• Click on the Finish
button to run the package.
The above was found on this website (I have used it and tested):
RBT2) If the client create the csv from excel then the data that have comma are enclosed within ' ... ' (double quotes) [as the below example] so how do the import can handle this?
You should use FORMAT = 'CSV', FIELDQUOTE = '' options:
The best, quickest and easiest way to resolve the comma in data issue is to use Excel to save a comma separated file after having set Windows' list separator setting to something other than a comma (such as a pipe). This will then generate a pipe (or whatever) separated file for you that you can then import. This is described here.
Sachin KainthSachin KainthFirs you need to import CSV file into Data Table
Then you can insert bulk rows using SQLBulkCopy
Brad Larson♦Here's how I would solve it:
Just Save your CSV File as a XLS Sheet in excel(By Doing so, you wouldn't have to worry about delimitiers. Excel's spreadsheet format will be read as a table and imported directly into a SQL Table)
Import the File Using SSIS
Write a Custom Script in the import manager to omit/modify the data you're looking for.(Or run a master script to scrutinize the data you're looking to remove)
Good Luck.
NeilBecause they do not use the SQL import wizard, the steps would be as follows:
Right click on the database in the option tasks to import data,
Once the wizard is open, we select the type of data to be implied. In this case it would be the
Flat file source
We select the CSV file, you can configure the data type of the tables in the CSV, but it is best to bring it from the CSV.
- Click Next and select in the last option that is
SQL client
Depending on our type of authentication we select it, once this is done, a very important option comes.
- We can define the id of the table in the CSV (it is recommended that the columns of the CSV should be called the same as the fields in the table). In the option Edit Mappings we can see the preview of each table with the column of the spreadsheet, if we want the wizard to insert the id by default we leave the option unchecked.
Enable id insert
(usually not starting from 1), instead if we have a column with the id in the CSV we select the enable id insert, the next step is to end the wizard, we can review the changes here.
On the other hand, in the following window may come alerts, or warnings the ideal is to ignore this, only if they leave error is necessary to pay attention.
This link has images.
Import the file into Excel by first opening excel, then going to DATA, import from TXT File, choose the csv extension which will preserve 0 prefixed values, and save that column as TEXT because excel will drop the leading 0 otherwise (DO NOT double click to open with Excel if you have numeric data in a field starting with a 0 [zero]). Then just save out as a Tab Delimited Text file. When you are importing into excel you get an option to save as GENERAL, TEXT, etc.. choose TEXT so that quotes in the middle of a string in a field like YourCompany,LLC are preserved also...
I wish I could use the FORMAT and Fieldquote functionality but that does not appear to be supported in my version of SSMS
Not the answer you're looking for? Browse other questions tagged sqlsql-servercsvbulkinsertbulk or ask your own question.
datacamp
Loading data into R can be quite frustrating. Almost every single type of file that you want to get into R seems to require its own function, and even then you might get lost in the functions’ arguments. In short, it can be fairly easy to mix up things from time to time, whether you are a beginner or a more advanced R user.
To cover these needs, DataCamp decided to publish a comprehensive, yet easy tutorial to quickly import data into R, going from simple text files to the more advanced SPSS and SAS files. Continue to read this tutorial to find out how you easily import your files into R!
(Try this interactive course: Importing Data in R (Part 1), to work with CSV and Excel files in R.)
Contents
Checking Your Data
To start, you first need to have data. The data can be saved in a file onto your computer in an Excel, SPSS, or some other file type. When your data is saved locally, you can go back to it later to edit, to add more data or to change them, preserving the formulas that you maybe used to calculate the data, etc.
However, data can also be found on the Internet or can be obtained through other sources.
Where to find these data are out of the scope of this tutorial, so for now it’s enough to mention this list of data sets, and DataCamp’s interactive tutorial, which deals with how to import and manipulate Quandl data sets.
Before you move on and discover how to load your data into R, it might be useful to go over the following checklist that will make it easier to import the data correctly into R:
- If you work with spreadsheets, the first row is usually reserved for the header, while the first column is used to identify the sampling unit;
- Avoid names, values or fields with blank spaces, otherwise each word will be interpreted as a separate variable, resulting in errors that are related to the number of elements per line in your data set;
- If you want to concatenate words, inserting a . in between to words instead of a space;
- Short names are prefered over longer names;
- Try to avoid using names that contain symbols such as
?
,$
,%
,^
,&
,*
,(
,)
,-
,#
,?
,,
,<
,>
,/
,,
,
[
,]
,{
, and}
; - Delete any comments that you have made in your Excel file to avoid extra columns or NA’s to be added to your file; and
- Make sure that any missing values in your data set are indicated with
NA
.
Preparing Your R Workspace
Make sure to go into RStudio and see what needs to be done before you start your work there. You might have an environment that is still filled with data and values, which you can all delete using the following line of code:
The rm()
function allows you to “remove objects from a specified environment”. In this case, you specify that you want to consider a list for this function, which is the outcome of the ls()
function. This last function returns you a vector of character strings that gives the names of the objects in the specified environment. Since this function has no argument, it is assumed that you mean the data sets and functions that you as a user have defined.
And you might consider changing the path that you get as a result of this function, maybe to the folder in which you have stored your data set:
Read CSV, TXT, HTML, and Other Common Files into R
You will notice that the following basic R functions focus on getting spreadsheets into R, rather than Excel or other type of files. If you are more interested in the latter, scroll a bit further to discover the ways of importing other files into R.
Read TXT files with read.table()
If you have a .txt
or a tab-delimited text file, you can easily import it with the basic R function read.table()
. In other words, the contents of your file will look similar to this
and can be imported as follows:
Note that ideally, you should just pass in the file name and the extension because you have set your working directory to the folder in which your data set is located. You’ll have seen in the code chunk above that the first argument isn’t always a filename, but could possibly also be a webpage that contains data. The header
argument specifies whether or not you have specified column names in your data file. Lastly, you’ll see that, by using this function, your data from the file will become a data.frame
object.
Inspect the final result of your importing in the DataCamp Light chunk!
It’s good to know that the read.table()
function is the most important and commonly used function to import simple data files into R. It is easy and flexible. That is why you should check out our previous tutorial on reading and importing Excel files into R, which explains in great detail how to use the read.table()
function optimally.
For files that are not delimited by tabs, like .csv
and other delimited files, you actually use variants of this basic function.
These variants are almost identical to the read.table()
function and differ from it in three aspects only:
- The separator symbol;
- The
header
argument is always set at TRUE, which indicates that the first line of the file being read contains the header with the variable names; - The
fill
argument is also set as TRUE, which means that if rows have unequal length, blank fields will be added implicitly.
Read CSV Files into R
If your separates the values with a ,
or ;
, you usually are working with a .csv
file. Its contents will look similar to this:
Make sure that you have saved the file as a regular csv file without a Byte Order Mark (BOM). If you have done this, you’ll see weird characters appearing at the beginning of your imported data if you don’t add the extra argument fileEncoding = 'UTF-8-BOM'
to your importing function!
To successfully load this file into R, you can use the read.table()
function in which you specify the separator character, or you can use the read.csv()
or read.csv2()
functions. The former function is used if the separator is a ,
, the latter if ;
is used to separate the values in your data file.
Remember that the read.csv()
as well as the read.csv2()
function are almost identical to the read.table()
function, with the sole difference that they have the header
and fill
arguments set as TRUE
by default.
Tip: if you want to learn more about the arguments that you can use in the read.table()
, read.csv()
or read.csv2()
functions, you can always check out our reading and importing Excel files into R tutorial, which explains in great detail how to use the read.table()
, read.csv()
or read.csv2()
functions.
Note that if you get a warning message that reads like “incomplete final line found by readTableHeader”, you can try to go and “stand” on the cell that contains the last value (c
in this case) and press ENTER. This will normally fix the warning because the message indicates that the last line of the file doesn’t end with an End Of Line (EOL) character, which can be a linefeed or a carriage return and linefeed. Don’t forget to save the file to make sure that your changes are saved!
Pro-Tip: use a text editor like NotePad to make sure that you add an EOL character without adding new rows or columns to your data.
Also note that if you have initialized other cells than the ones that your data contains, you’ll see some rows or columns with NA
values appear. The best case is then to remove those rows and columns!
read.delim() for Delimited Files
In case you have a file with a separator character that is different from a tab, a comma or a semicolon, you can always use the read.delim()
and read.delim2()
functions. These are variants of the read.table()
function, just like the read.csv()
function.
Consequently, they have much in common with the read.table()
function, except for the fact that they assume that the first line that is being read in is a header with the attribute names, while they use a tab as a separator instead of a whitespace, comma or semicolon. They also have the fill
argument set to TRUE
, which means that blank field will be added to rows of unequal length.
You can use the read.delim()
and read.delim2()
functions as follows:
XLConnect Package for Reading Excel Files
To load Excel files into R, you first need to do some further prepping of your workspace in the sense that you need to install packages.
Simply run the following piece of code to accomplish this:
When you have installed the package, you can just type in the following to activate it in your workspace:
Importing Excel Files With The XLConnect Package
The first way to get Excel files directly into R is by using the XLConnect
package. Install the package and if you’re not sure whether or not you already have it, check if it is already there.
Next, you can start using the readWorksheetFromFile()
function, just like shown here below:
Note that you need to add the sheet
argument to specify which sheet you want to load into R. You can also add more specifications. You can find these explained in our tutorial on reading and importing Excel files into R.
You can also load in a whole workbook with the loadWorkbook()
function, to then read in worksheets that you desire to appear as data frames in R through readWorksheet()
:
Note again that the sheet
argument is not the only argument that you can use in readWorkSheetFromFile()
. If you want more information about the package or about all the arguments that you can pass to the readWorkSheetFromFile()
function or to the two alternative functions that were mentioned, you can visit the package’s RDocumentation page.
Importing Excel Files With The Readxl Package
The readxl
package allows R users to easily read in Excel files, just like this:
Note that the first argument specifies the path to your .xls
or .xlsx
file, which you can set by using the getwd()
and setwd()
functions. You can also add a sheet
argument, just like with the XLConnect package, and many more arguments on which you can read up here or in this blog post.
Read JSON Files Into R
To get JSON files into R, you first need to install or load the rjson package. If you want to know how to install packages or how to check if packages are already installed, scroll a bit up to the section of importing Excel files into R :)
Once this is done, you can use the fromJSON()
function. Here, you have two options:
- Your JSON file is stored in your working directory:
- Your JSON file is available through a URL:
Read XML Data Into R
If you want to get XML data into R, one of the easiest ways is through the usage of the XML package. First, you make sure you install and load the XML package in your workspace, just like demonstrated above. Then, you can use the xmlTreeParse()
function to parse the XML file directly from the web:
Next, you can check whether R knows that xmlfile
is in XML by entering:
Tip: you can use the xmlRoot()
function to access the top node:
You will notice the data is presented kind of weirdly when printing out the xmlfile
vector. That is because the XML file is still a real XML document in R at this point. To put the data in a data frame, you first need to extract the XML values. You can use the xmlSApply()
function to do this:
The first argument of this function will be topxml
, since it is the top node on whose children you want to perform a certain function. Then, you list the function that you want to apply to each child node. In this case, you want to extract the contents of a leaf XML node. This, in combination with the first argument topxml
, will make sure that you will do this for each leaf XML node.
Finally, you put the values in a dataframe!
You use the data.frame()
function in combination with the matrix transpostition function t()
to do this. Additionally you also specify that no row names should be included:
If you think the previous steps are a bit too complicated, just do the following:
Importing Data From HTML Tables Into R
From HTML tables into R is pretty straightforward:
Note that the which
argument allows you to specify which tables to return from within the document.
If this gives you an error in the nature of “failed to load external entity”, don’t be confused: this error has been signaled by many people and has been confirmed by the package’s author here.
You can work around this by using the RCurl
package in combination with the XML
package to read in your data:
Note that you don’t want the strings to be registered as factors or categorical variables! You can also use the httr package to accomplish exactly the same thing, except for the fact that you will want to convert the raw objects of the URL’s content to characters by using the rawToChar
argument:
Read SAS, SPSS, and Other Datasets into R
As you already know, R is a programming language and software environment for statistical computing. That’s why it probably won’t come as a surprise when I say that many people use R as an open-source alternative to commercial statistical programs, such as SPSS, SAS, etc.
In this section, you’ll see how you can import data from advanced statistical software programs: you’ll see which packages that you need to install to read your data files into R, just like you have done with data that was stored in Excel or JSON files.
Read SPSS Files into R
If you’re a user of SPSS software and you are looking to import your SPSS files into R, firstly install the foreign package. After loading the package, run the read.spss()
function that is contained within it and you should be good to go!
Tip if you wish the result to be displayed in a data frame, make sure to set the to.data.frame
argument of the read.spss()
function to TRUE
. Furthermore, if you do NOT want the variables with value labels to be converted into R factors with corresponding levels, you should set the use.value.labels
argument to FALSE
:
Remember that factors are variables that can only contain a limited number of different values. As such, they are often called “categorical variables”. The different values of factors can be labeled and are therefore often called “value labels”
Autocad To Vcarve Pro
Read Stata Files into R
Artcam 2008 Tutorial Pdf
To import Stata files, you keep on using the foreign
package. Use the read.dta()
function to get your data into R:
Read Systat Files into R
If you want to get Systat files into R, you also want to use the foreign
package, just like shown below:
Read SAS Files into R
For users that also want to import SAS files into R, it’s quite simple! For starters, install the sas7bdat
package. Load it, and then invoke the read.sas7bdat()
function contained within the package and you are good to go!
Does this function interest you and do you want to know more? Visit the Rdocumentation page.
Note that you can also use the foreign
library to load in SAS data in R. In such cases, you’ll start from a SAS Permanent Dataset or a SAS XPORT Format Library with the read.ssd()
and read.xport()
functions, respectively. For more information, click here.
Read Minitab Files into R
Is your software of choice for statistical purposes Minitab? Look no further if you want to use Minitab data in R!
Importing .mtp
files into R is pretty straightforward. It won’t come as a surprise any more that you’ll need to install the foreign package and load it. Then simply use the read.mtp()
function from that package:
Read RDA or RData Files into R
If your data file is one that you have saved in R as an .rdata
file, you can read it in as follows:
Read Databases and Other Sources Into R
Since this tutorial focuses on importing data from different types of sources, it is only right to also briefly mention that you can import data into R that comes from databases, webscraping, etc.
Read Relational and Non-Relational Databases into R
Importing Data From Relational Databases
For more information on getting data from relational databases into R, check out this tutorial for importing data from MonetDB.
If, however, you want to load data from MySQL into R, you can follow this tutorial, which uses the dplyr package to import the data into R.
If you are interested in knowing more about this last package, make sure to check out DataCamp’s interactive course, which is definitely a must for everyone that wants to use dplyr to access data stored outside of R in a database. Furthermore, the course also teaches you how to perform sophisticated data manipulation tasks using dplyr!
Importing Data From Non-Relational Databases
For more information on loading data from non-relational databases into R, like data from MongoDB, you can read this blogpost from “Yet Another Blog in Statistical Computing” for an overview on how to load data from MongoDB into R.
Importing Data Through Webscraping
You can read up on how to scrape JavaScript data with R with the use of PhantomJS and the rvest
package in this DataCamp tutorial. If you want to use APIs to import your data, you can easily find one here.
Tip: you can check out this set of amazing tutorials which deal with the basics of webscraping.
Importing Data Through The TM Package
For those of you who are interested in importing textual data to start mining texts, you can read in the text file in the following way after having installed and activated the tm
package:
Then, you have to make sure that you load these data as a corpus in order to get started correctly:
You can find an accessible tutorial on text mining with R here.
This Is Just The Beginning…
Loading your data into R is just a small step in your exciting data analysis, manipulation and visualization journey. DataCamp is here to guide you through it!
Continue with our Importing Data in R course or go and build models with your data: our machine learning will definitely come in handy, just like our Introduction to Machine Learning.
If you want to continue with data manipulation, go through the DataCamp tutorial on 15 Easy Solutions To Your Data Frame Problems In R or consider taking DataCamp’s data.table course.
Are you not sure where to start? Check out DataCamp’s course curriculum and discover what lies ahead in your data science journey with DataCamp!